SGU Episode 395
This is the transcript for the latest episode and it is not yet complete. Please help us complete it! Add a Transcribing template to the top of this episode before you start so that we don't duplicate your efforts. |
This episode needs: transcription, time stamps, formatting, links, 'Today I Learned' list, categories, segment redirects. Please help out by contributing! |
How to Contribute |
SGU Episode 395 |
---|
9th Feb 2013 |
(brief caption for the episode icon) |
Skeptical Rogues |
S: Steven Novella |
B: Bob Novella |
R: Rebecca Watson |
J: Jay Novella |
E: Evan Bernstein |
Guest |
GH: George Hrab |
Quote of the Week |
Nothing exists except atoms and empty space; everything else is opinion. |
Links |
Download Podcast |
SGU Podcast archive |
Forum Discussion |
Introduction
You're listening to the Skeptics' Guide to the Universe, your escape to reality.
S: Hello and welcome to the Skeptics' Guide to the Universe. Today is Wednesday, February 6, 2013, and this is your host Steven Novello. Joining this week are Bob Novella,
B: Hey, everybody.
S: Rebecca Watson,
R: Hello, everyone.
S: And Evan Bernstein.
E: Hello, my friends, how are you?
S: Good. How are you, Evan?
E: I'm doing fine, thank you.
S: Jay is conspicuously absent this week. Jay and his wife, just a couple of days ago had their first child.
E: Yay!
R: Slacker.
B: Baby Dylan.
R: You gonna let a baby get in the way of SGU, come on.
S: He's gotta get his priorities straight.
R: Yeah.
S: So Jay is busy not sleeping, and taking care of his wife and newborn.
E: Yeah, well.
R: . . . poop.
E: He had to know that was coming.
B: He's been practicing for that for years.
R: I wonder if the baby will have Jay's unique abilities to pee.
(laughter)
R: Long distances.
E: Reference from two Dragon Cons ago.
S: We'll have to see.
This Day in Skepticism (1:07)
R: Hey, so, happy Space Medicine Day.
E: Space Medicine!
R: It's not really a day. But it should be. It could be. I don't know. I just like the phrase "space medicine." Because if you put "space" in front of just about anything it becomes more exciting.
S: Space monkey.
R: Yeah!
S: Yeah.
R: Way better. We should talk about that, by the way. That space monkey that Iran apparently didn't send up. I don't know. That's a whole other thing. (laughter) But, not what I'm talking about.
E: There were pictures. That thing was so cute, in a little suit.
S: Strapped down like it was. Oh my god.
R: Yeah, but he didn't take any Instagrams from space. So, I don't know. But no, today, this day in history, 1949, February 9, 1949, the first Department of Space Medicine was established at a U.S. Air Force academy. The School of Aviation at Randolph Field, Texas. You might be able to guess what space medicine's all about. It's making sure astronauts don't die when they go into space, and all of the many things that entails. The guy who was the first professor of space medicine was Hubertus Strughold, and, at this point, it becomes less fun. Because, he was a horrific Nazi, who did horrible, horrible, horrible things.
S: He was a literal Nazi?
R: He was literally a Nazi. There were documents uncovered during the Nuremberg trials that linked him to really horrific medical experiments on concentration camp inmates.
E: Oh, wow.
R: Yeah, really horrific. U.S. space history is unfortunately littered with Nazis, because that was one of the plunders that the U.S. got after the war, was the brains behind a lot of Germany's advancements. And so one of those was Hubertus Strughold.
S: Well, that's that famous line from The Right Stuff, you know: "Our Nazis are better than their Nazis." The U.S. space program beating out the Russian, the Soviet space program.
R: Right. So, yeah, there used to be an aeromedical library at Brooks Air Force Base named after him, but in 1977, when these documents were uncovered, it was renamed.
S: I betcha the whole field of space medicine really took off after people started going into space.
R: You think? (laughter)
S: Prior to that, not that there was nothing they could do, but I mean prior to that, I betcha it was mostly theoretical work.
B: Kind of like Xenu biology?
R: A lot of dunking people in tanks of water. Things like that. I don't know.
S: I actually have a colleague who, while they were at Yale, they're not there anymore, but they were working on space medicine. They had a grant from NASA and they were suspending rats to see how they, if they, how their anti-gravity walking system would develop if they were raised essentially suspended to simulate zero gravity. The thinking being that if you had a baby born in space and they grew up in zero gravity, they would never develop certain parts of their nervous system that are adapted to gravity.
R: Right.
E: Space baby.
B: And they would duplicate that by hanging them?
S: Suspending them from their rear legs.
B: Suspending them?
S: Yeah.
E: Funny they never got to the human trials for that. (laughter)
B: Didn't NASA have those anti-gravity rooms like they showed in I Dream of Jeannie? Do you remember that?
S: No.
R: No.
E: Anti-gravity rooms . . . I Dream of Jeannie?
S: I remember I Dream of Jeannie.
B: I remember, in a few episodes, they had a room where you walked in, they hit a switch and the gravity was turned off. Even as a kid, I was like, that's baloney!
E: I think that was Barbara Eden just blinking her eyes.
R: She didn't have to blink here eyes, that was Bewitched.
E: A nod and a blink.
S: No, no, Bewitched was the twitchy nose. Jeannie was the blinking of the eyes.
R: Oh, right. She did the crossing the arms.
S: Remember when Jeannie had the drops put in her eyes and she couldn't blink and her magic was on the fritz? Come on.
R: No. I don't remember. Why. . . (garbled) What is with you guys and your encyclopedic knowledge of I Dream of Jeannie?
S: Of attractive magical women?
R: I just remembered what Barbara Eden looked like, so never mind.
B: Major Nelson never availed himself of her talents.
News Items
Russian Lake Monster (5:30)
LiveScience: Reports Surface of Monster Lurking in Russian Lake
S: Well, Evan, I understand there's a lake monster in Russia.
E: (laughs) Where did you read that, Steve?
S: The Siberian Times.
E: It's true. It's true, yeah, the world is . . .Steve and everyone, the world is full of lake monsters. And it seems that wherever human beings encounter very large lakes, there's bound to be a reported monster that lives in the lake. For example, we have Nessie, the monster from Loch Ness in Scotland; we have Champ, in Lake Champlain in New York, Wally, from Wallowa Lake in Oregon; and Woodsy from Lake of the Woods in Ontario, Canada. Right?
S: Those are imaginative names.
E: Yes. (he laughs)
B: The better to pull in the tourists, my friend.
E: Yes, exactly. And that leads us into this week's news item about the supposed lake monster of Lake Labynkyr in Siberia. And our friends over at, well, I learned about this from livescience.com, a really good website. And they informed us this week that a team of scientists from the Russian Geographical Society have reported they found the skeletal remains of an animal that fits the description of the Devil of Lake Labynkyr. Now, you see, you've got to leave it up to a bunch of people in the middle of nowhere of some assemblance of an original name for the creature, right. I mean, I waiting to see if anyone was gonna call it, maybe Labia or Nicker or something.
B: Oooohh!
R: Labia?
E: But thankfully they didn't. Well, you know, for Lake Labynkyr, right? That's about all I could think of. But thankfully they did not do that. (laughter) Thankfully they did not do that. They came up with Devil. Now reports of a lake monster here have, began in the 19th century. The stories have not only prevailed for over a hundred years, but they gained traction to the point where scientists seem to be actively looking for something resembling a monster in the lake. And with the discovery of these remains, they think they might have finally some concrete evidence that something unusual is or was down there. Some accounts of this monster in the lake have put the creature as big as 33 feet in length.
B: That's pretty big.
S: Um hmm.
E: The lake is considered one of the more mysterious lakes in the world because of its temperatures. The temperatures in the area can reach as cold as minus 60 degrees Celsius. Yet the waters in this lake do not completely freeze. They stay at a relatively balmy two degrees Celsius. So, or 36 degrees Fahrenheit. And the folks at the Siberian Times proudly wrote in a recent article that, I quote "Scientists struggle to explain this phenomenon."
S: Are they baffled?
E: No, but they're just struggling, apparently. And for the first time, though, divers have reached the bottom of the lake during these very very cold winter months. So this was some kind of record in that regard, and the dive was made at the request of Yakutsk State University in order to take some footage. They actually brought cameras down to the bottom of the lake, and they also gathered samples of some of the water, flora and fauna. Yet they also apparently found these skeletal remains, right?
S: Oh, good, so we have some hard evidence to examine.
E: Yeee-, exac--, wel—no –o-o-, unfortunately
S: What? But they have skeletons!
E: They did. They saw the skeletons. Unfortunately for some reason they didn't actually bring the bones up from
S: Okay, but they have pictures.
E: Well, suur—of course they have pic--, well, not really.
R: Well, obviously the bones were cursed. They couldn't move them and risk angering Satan. And they probably don't show up on film.
S: Ah! Okay.
B: I'm convinced.
E: What we have are more stories about evidence. Now let's see, where have we heard about this before? Gee, in just about every other paranormal and pseudoscientific encounter.
S: Reports of evidence, but never the evidence itself.
E: Never the evidence itself. Yup. And on the other side of the coin, there are some scientists in Russia that are standing up for reason and skepticism, such as Yury Gerasimov at the Institute of Freshwater Biology at the Russian Academy of Sciences. And he said "If we trust the stories about this 'Devil,' there must be about 1.5 meters [or 5 feet] between its eyes. This means the length of its body must be about 8 meters [or up to 26 feet]," And pike, you know, it's rumored that it's a large pike that grew and grew. But pike don't live so long in order to reach such a big size. In general there are two factors that help fish to grow: nutrition and comfortable water temperatures. So even if the nutrition were perfect there, surely the temperatures were not high enough, so in his opinion the view about a huge pike is a fantastic one.
S: Yeah, so it's an ichthyosaur.
E: Yes.
S: Or a plesiosaur.
E: Oh, whatever pleases you.
S: Or it's a labiasaur. We'll name it after . . .
E: Plus, you gotta think about the plausibility. I mean, how could a creature that large, first of all, evade scientific detection and (b) actually survive in an environment like that? What would its food source be, right? Wouldn't it gobble up most of its limited resources that would be under there? And what about the population? You know, there had to be some sort of sufficient breeding population in order for this thing to even be around in the first place. Where are the evidence of more of these creatures?
S: Well, Evan. What about the coelacanth? They dug that up after thinking it was extinct for millions of years. And how do you know there isn't some underground connection that connects to a larger body of water, maybe even an ocean, that's bringing in an endless supply of food.
E: Those are interesting points, Steve. And, you know, I think, perhaps, some people tie the fact that because this lake does not totally freeze in the very frigid, frigid winter months, is that, scientists are not really baffled so much by this. They do have plausible theories, because it's a region of a lot of seismic activity. Fissures can open up and stuff, leading to warm conditions coming up through the bottom of the lake that ultimately heat the lake so there's perhaps some volcanic activity going on in the region. And yes, Steve, I guess it could open up to, one of these areas could wind up opening up underground to some other regions.
S: Essentially, and I'm throwing this out because that's what's they're saying, the believers, but they're just making that up. They don't have any evidence that there's actually some kind of hidden underground connection to another lake. And even that, I mean, how big could it be, especially if they haven't found it?
E: It's all speculation. There is no solid evidence. And, once again, the legend of this lake monster continues, and will continue.
S: Yeah. Well, like all of them, the issue can be easily resolved by just finding some hard evidence. Skeleton, for example. But it'll never be resolved the other way. How much time has to go by, like with Loch Ness, without finding evidence of the actual creature itself before the mystery mongers will give up? Never, it seems, right?
E: Right. Or people admit to having floated the balsam wood out there and taken the photograph of it, you know, admitted hoaxsters. It doesn’t matter. That doesn't dissuade the true believers either.
S: Yeah. Even if 95% are hoaxes, there's still that five percent that we can't explain.
E: No monsters, no remains of monsters, no monster poop. I mean, come on.
Bones of Richard III (13:01)
BBC News: Richard III dig: DNA confirms bones are king's
S: Yeah, I mean it's not finding the bones of a long-dead British king under a parking lot, or something like that.
B: Oh, boy. Nice segue. This news item was downright ubiquitous this week. It was crazy. Everywhere I turned, there it was. We're getting emails. Every website I went to, everyone's talking about this. And all because a skeleton was found under a parking lot, or car park. And of course, there's a little bit more to it than that. It's a very special skeleton. In fact, it's been confirmed to belong to England's last Plantagenet king, King Richard III. The final monarch to die on a battlefield, and the death that saw the start of the Tudor dynasty that lasted over a century. Now Plantagenet (pronouncing it Plant' a jen et)
S: It's pronounced Plan TA jen et.
B: It's the family name of a line of kings from Henry II to Richard III, that was from 1154 to 1485 A.D., so very long. So clearly this seems to be a significant bag of bones, if it is King Richard, of course. But my first thought upon hearing this was that, was how can they be so sure that it really really is him and not just somebody who was from that time period, or maybe was just related. So I think the best place to start is with his death. What do we know about how King Richard III died?
R: He needed a horse. (laughter)
E: He died o' moidah.
B: He died in the Battle of Bosworth Field in 1485 and was said to be buried in Greyfriars Church. The location of which has been lost to history, of course, until now. He was defeated by the Tudor forces, which were half the size of his royal army, which I didn't know. I think they all had phaser rifles or something. That much, minus the lasers, of course, is generally accepted. So does his skeleton support that bit of history? Yes, it does. The skeleton shows ten injuries, eight of them to the skull alone, and they occurred at the time of death. The worst injury was this nasty slice taken off like the back of his head, the back of his skull, probably made with a halberd, they think. And there was a smaller hole a little higher up
S: Oo. Critical hit.
E: Oo. Yeah.
(garbled)
B: Actually, two critical hits. The smaller one they think went fairly deep and was probably caused by a sword. One or both of those most likely caused his death, perhaps instantaneously, if they went deep enough, especially that smaller one. There were also smaller wounds to the head, lots of other ones, plus there were humiliation injuries. Like a pelvic wound that was probably caused by a weapon thrust through his butt. Boy, were they mad at him. Clearly this guy, whoever it may be, died in battle, as Richard was supposed to have. And not from, say, a heart attack or slipping on a banana peel or tripping over a peasant or something. This guy was in battle and it was nasty. So what about the time period, 1485. Is the skeleton that old? And again, the answer is yes. Radio carbon dating places it between the last half of the 15th century and the early 16th century, so that's a perfect match. 1485. Then what about the age of the man's bones when he died? You know if they belonged to a teenager or an old guy, game over. It can't be Richard. And again, Dr. Jo Appleby, who's, she's an osteo-archaeologist from
E: Cool.
B: from the School of Archaeology and Ancient History. She says that the bones belonged to a man in his late twenties or early thirties, which if you know a lot about bones you can pretty much definitively say, just pretty much by looking at them, I think. Richard was 32 years old when he died, so there's another perfect match. This was pretty interesting, another piece of evidence derived from the carbon dating was the fact that this person had a high protein diet. And you might say big deal, but it includes a lot of fish apparently, and that points to a very high status person. In that time, you did not eat a lot of fish if you were a peasant.
E: How do you know he's the king?
?: He ate fish. (laughter)
B: Another thing evident from the bones was a distinct curvature of the spine. This person clearly had scoliosis. And this again matches our modern conception of Richard III. You may remember Shakespeare's play Richard III depicts him as a deformed hunchback. He describes him as "rudely stamped" and "unfinished." In reality, the owner of these bones would not have been as bad as that. His height, his height was probably affected, and one shoulder would have been higher than the other one. And even this makes sense, even though it's not a perfect match to how he's typically envisioned. It makes sense though, because, it makes sense that Shakespeare would exaggerate this. He lived during the Tudor reign, after all. And who would want to piss them off? So in a sense his play could be seen as kind of a, like propaganda of sorts.
S: Mocking Richard III a little bit.
B: for the ruling empire, I mean, that's exactly, that was the story that was being put out there, and he went with it; whether he believed it or not doesn't matter. It just makes a lot of sense that it would be exaggerated. But, it's just not as bad as he's often displayed. Finally there's the king of evidence, DNA. At first it seemed unlikely that DNA would be found, considering the age of the bones. Luckily, though, the conditions under the car park were very good for bone preservation, and they did get some from the teeth and his right femur. And this is really cool: a team of enthusiasts and historians did incredibly difficult and detailed genealogical research, just trying to find out can we find somebody that is clearly part of this family line, and they actually did. They found a seventeenth generation descendant of Richard's sister. And they used her and her son. It's funny because they were, I think it was actually, this was like the last generation because they were no more women in the family, so that line was, is over now. It's not gonna be anymore. So they used, I think they got her DNA, and even though I think she had died relatively recently, they got some of her DNA and the son. And they did a positive match. They were definitely related. But how cool would that be to find out that you're a relative of Richard III.
S: Cool.
B: 'Cause I'm sure they didn't
R: Ehh.
B: What?
R: I don't know. There are better people that I'd rather—
(garbled)
E: --a bit tyrannical.
B: You know, you've got to place him in his time. A lot of kings at that time killed a lot of people in order to get to the top. What we know about him does come from the people that won, you know. And they can pretty much say whatever they want. So he's, I don't think he's
S: Well, this descendant, Bob, he should make a bid to take back the throne for his family. (laughter)
E: Absolutely.
R: I don't think it works that way.
E: You're outta here, Elizabeth!
B: It is a fascinating story, 'cause in my research, of course, I was doing some . . .
S: He needs to like arm wrestle with Prince Charles or something.
B: Yeah, right? It's a fascinating story. So definitely check this out on the web. There's so many angles; there's so many different ways and different aspects to this story. And not just the evidence I've discussed. I mean I found that most compelling, and wanted to talk about that, but there's also, they did facial reconstruction and how that works to find out what he maybe looked like. There's also some controversy going on now about who gets to determine where the skeleton is buried, et cetera. There's lots of different things to look at and learn about this. And if you learn a little bit about history like I did it's be worth it. So check it out.
S: This reminded me. Do you guys remember this? Hurricane Sandy, back in October.
B: What is the connection?
E: I kinda remember it.
R: Yeah, I think I do remember it.
S: Upturned a tree in the New Haven Green
E: Yes.
S: A really old oak tree. And a woman looking at the roots underneath the tree saw a skeleton, like embedded in the roots of the tree.
B: Cool.
E: So cool.
S: And it turned out to be a 200-year-old skeleton. The story is that there was a graveyard on the Green, and just like in the movie Poltergeist, they moved the headstones, but they left the bodies behind
B: Nooooo!
E: Whaaat?
S: when they turned it into a green. So there's like hundreds of bodies under the Green in the middle of New Haven.
B: How awesome is that?
R: Creepy.
E: That was a spooky movie, too.
S: Yeah, and this one just happened to be underneath this famous old oak tree. Pretty cool.
B: Excellent.
E: Hey, Bob, I have a question.
B: Yeah?
E: Is now the winter of our discontent? (laughter)
S: What's the next line?
E: Made glorious summer by this sun of York; And all the clouds that lour'd upon our house In the deep bosom of the ocean buried.
S: Very impressive.
E: Bosom. Bosom.
B: So many plays on words there, it's great.
Scientific Genius (21:36)
Scientific American: Is the age of scientific genius over?
S: So, there's an interesting article in Nature and which was then further discussed in Scientific American, which I came across. And it asks a question that has come up a little bit on this show before, and that is: Are there scientific geniuses today or will there be again, like there was in the past? So will we have another Newton, Darwin or Einstein? Or is the age of the scientific genius simply over? What are you guys' thoughts about that.
B: Yeah, Steve, this absolutely reminds me of Stephen Jay Gould's book, Full House. He discusses this idea in relation to the disappearance of .400 hitters in baseball and he goes over lots of the theories. The bottom line was that everyone is just so close to the wall of maximal performance that it's very hard for somebody to stand. 'Cause everybody is just so damned good at it that
E: That's where steroids come in.
B: Well, yeah, the steroids actually move that wall a bit , so you're right, you can stand out. But I would think it would be similar, Steve, that our technology and our theories are so cutting-edge and refined over the decades that it's so hard for somebody to really extend themselves that much farther. But I think, it's not a perfect analogy of course, because all you really need is a new theory, a new way to look at things, and you could really transcend all the other theories. But that's my thoughts, immediately, when you said that.
S: So a few things that are brought up in this discussion as to why aren’t there Darwins and Newtons today. One is the notion of just the fact that we've picked the low-hanging fruit. You can only relativity once; you can only discover that DNA is the molecule of inheritance once or the notion of natural selection as a major mechanism of evolution. So once you establish these basic area disciplines, basic areas of science and all the big revolution occurs that further foundational discoveries or truly revolutionary discoveries become more and more rare.
R: I would just like to pause so I can briefly Steve for the record: low-hanging fruit: Steve referring to Einstein's theory of relativity. (laughter)
S: Well, that's the name of this theory that the notion that, the sort of the big questions that were hanging there, we've already sort of plucked those. Now, scientists are chasing more and more finer revisions of those theories. But they're not going to make discoveries that big again. You know, 'cause they're just not there to be had. Some scientists say that there are no crises in different fields that were similar to the crises in physics that were resolved by relativity and quantum mechanics, for example. Although they say that physics really is the one area where there is still a major crisis, trying to
B: Oh, yeah, many of them.
S: resolve the, for example
E: Dark matter.
S: Well, yeah, so, there's still major mysteries out there like what is dark matter, but also just trying to resolve gravity and the other forces
B: Quantum gravity
S: Yeah, quantum mechanics and relativity. You know the theory of everything, string theory versus quantum loop gravity, so those are sort of big fish still hanging out there. But most other disciplines are chasing finer and finer revisions of basic concepts that have already been well established. Another factor is the fact that science is, and this probably relates most closely to what you were saying, Bob, about Gould's point, although I don't think it's, I agree, it's not an exact analogy. But the notion of the lone scientist, self-funded, working in their garage or their basement, making major scientific discoveries, it's just, the world just doesn't exist, work that way anymore; that science is
B: Interdisciplinary.
S: Yeah, it's interdisciplinary, it's often high tech, it's collaborative. You know, it's communities of scientists working together, each adding a little piece to a bigger puzzle. Think about it, like, Darwin, working for decades, by himself and finding
B: It won't happen. It literally won't happen.
S: Literally couldn't happen. You cannot work for decades and not get scooped by twenty other people, who are working on the same problem.
B: And Darwin almost did. Darwin almost . . . Wallace . . . hello.
E: Yeah, he was hesitant until he, yeah.
S: He really took his time. The situation is not the same as it was back then.
R: Those are all reasons why we might not get other great scientists the likes of Einstein and Darwin. But there's really no evidence that that's going to happen. I mean, it hasn't been that long since Einstein. And I don't think that we can take a span of fifty, sixty years and say "Well, we haven't seen another Einstein. . . "
S: We're pushing a hundred years, if you're talking about relativity, though, Rebecca.
R: Yeah.
S: But you're right. It's still
B: Special was 1905.
S: Yeah, it's not enough time. Yeah, it was 1914 for general, or 1915?
B: Yeah.
E: 15.
S: 1915. Two years, it'll be a hundred years from general relativity.
E: We should celebrate (garbled) (laughter)
R: Cake!
E: Relativistic cake, yay!
S: So, but you're right. I totally agree with you. We need a longer period of time to see if this trend continues. I do think that the fact that the way science works, this notion of you start with very broad brushstrokes. And when we first started investigating the universe with scientific methodology, all of the classical about how things work were all systematically overturned. So there was all these revolutionary new scientific ideas establishing basic disciplines and basic notions about stuff. Again, once you largely are through that phase of science, now we're into the institutionalized, almost industrialized, science. We have communities of people working often in institutions like universities or in collaborations, making incremental advances themselves, but combining together to produce these greater and greater detailed refinements on existing knowledge. This also relates, Bob, to a discussion that you and I have had a number times, and that is the nature of scientific progress. Whether or not it follows the singularity type of model or paradigm, where scientific advance accelerates geometrically.
B: Or exponentially.
S: Or even exponentially. Or you get to the point with certain disciplines of diminishing returns where it takes more and more work to make smaller and smaller advances. That's the low-hanging fruit hypothesis. So I think that both are kind of true at the same time. I don't think those are exclusive ways of looking at things.
R: And not even just small advances, but I think you could say that if somebody works their entire life to, for instance, figure out dark matter, that's different than what we currently think of as the great scientists of the past who tackled many different subjects and produced many different kinds of results. As opposed to like, I do feel like, we're gonna have plenty of scientists that we look back on and we say "Oh, that guy was brilliant because he led the team that figured out dark matter." It's just not quite the same as "Oh, he's the guy that figured out 18 different things we didn't know about mathematics before."
S: Yeah. Exactly. That's another thing, you look back at some of the scientific figures in centuries past, like astronomers and whatnot, who contributed in many many different areas, and not just in one narrow area. So that's another thing, scientific experts are getting more and more narrow in their focus, 'cause you have to be. You have to be incredibly narrow in order to stay at the cutting edge of whatever it is you're researching. You can't be a master of multiple different disciplines. It's just not possible. All right, well, it's very interesting discussion, but let's move on.
Without Fear (30:08)
The Raw Story: Fearless brain-damaged patients are terrified of suffocation
S: As I said, Rebecca, you're gonna talk to us about a bit of neuroscience in the news, actually, having to do with brain damage and fear.
R: Yes I am. As the neuroscience expert here on the podcast, I figured that I would tackle this.
E: Um hm.
R: Okay, no. But I love this because this falls into my file of jobs that I wish I could do. And the job is this: you take some patients; they have a particular type of brain damage; it involves lesions on their amygdala, and the amygdala is responsible for many things, obviously. But one thing in particular seems to be responsible for feelings of fear and anxiety. So you're a scientists; you get these people, just a couple of them because it's a pretty rare condition. Their amygdalae are tiny, shriveled and they no longer can sense fear. They don't get afraid. So your job is to scare the crap out of them. Any way you can.
B: I could do it. (laughter)
R: Well, for a very long time, they failed. There was one patient in particular, known only as "SM" who apparently, a researcher found just wandering down the street in traffic, because she was not afraid of getting hit by a car. And the researchers took them and they took patients like SM and they took them to haunted houses
B: Cool.
R: They showed them spiders and snakes. They showed them horror films. They did everything they could think of
S: Put a gun to their head.
R: Yeah. Literally putting them in situations where they might feel as if their life was in danger. And, yup: nothing. So first of all, super-fun job. Things got really interesting recently, though. Researcher knew about this one particular technique that you can use to induce panic attacks in people with anxiety disorders. And you can do that by having them breath in carbon dioxide, a higher rate of carbon dioxide than normal. And, in people without anxiety, apparently this doesn't really do much. You breath a bit more. People with anxiety disorders it almost immediately triggers a panic attack. So they decided that they would do this to the people with the damaged amygdalae. Because, their hypothesis was, this is a fear response, and therefore our patients should not have any response to breathing in the carbon dioxide. So they had them breathe it in through a mask, and what they found, much to their shock, was that the brain-damaged patients immediately became super panicky. Even more so than a control group of participants who did not have this type of brain damage.
B: Scaredy-cats.
R: Well, they asked the patients with brain damage how they felt, and they described feeling as though they were about to die. And some of them had never felt fear before in their lives. SM in particular had never felt afraid before.
B: Whoa.
R: The others hadn't felt any kind of fear in decades. So, you can imagine; no, you can't imagine. How would that feel to be afraid for the very first time?
E: Terrifying?
R: It must have been absolutely terrifying. Yeah. That is how they described it right afterwards. They described it, when they put themselves back in that moment, they described it as being unlike anything they'd ever felt before, and that they literally feared for their lives. Super interesting thing, though, is what happened later on. They did this test over the course of two days. And so they brought the patients back on the second day, and before they did the test again, they asked them "What do you feel going into this?" Knowing what happened yesterday, or whatever, the previous day, how do you feel? And all of them were completely nonchalant. (She laughs) They'd completely lost any fear that they had felt in relation to the mask. And so they went through it again, apparently, and again all of them completely freaked out and feared for their lives. So, what does this all mean? Well, it could mean a lot of things. Some of the things they think it might mean: our fear response is a bit more complicated than originally thought. Apparently the amygdala isn't the only thing responsible for triggering fear responses in all cases. There's a difference, apparently, between different types of things we're afraid of. For instance, the carbon dioxide mask causes a different physiological reaction than just showing somebody a snake, having them handle a spider or something. And so our bodies, our brains, react differently to those different stimuli. They also said that there could be something to the idea that the amygdala might be responsible for stopping panic attacks from happening, which could help in studies on people with anxiety disorders. So there are a lot of different directions they can go in, but it's obviously going to require a bit more research. But yeah, I thought it was a really cool experiment, and I want that job. I want my job to be scaring people who don't get scared. Steve, what do you think?
S: Yeah, that's cool. Let me give you my quick primer on the amygdala and the whole
E: Aah, what do you know?
S: So it's actually very interesting. Very quickly, the amygdala is part of the limbic system, or limbic lobe, if you will, which is involved with emotion processing and also tied very closely to memory, which makes sense. The amygdala itself is involved with emotional processing, not just fear and anxiety. In fact, people who have these kinds of lesions of the amygdala are generally very flat in affect. They're not just fearless, they're also tend to be a little emotionless.
R: And they also have trouble detecting emotions in others.
S: Exactly. The ability to detect emotions in others is also apparently processed in the same location. The thalamus is the sensory relay part of the brain and very close to the amygdala. The thalamus gives sensory information to the amygdala. And that includes vision, hearing, smells, but also visceral information, from your body. So if you feel discomfort in your body, that also can trigger a fear response. That information also goes to the cortex, and the cortex communicates to the amygdala and the amygdala communicates back to the cortex as well. So, imagine this. You see something out of the corner of your eye that could be threatening, and you have an immediate startle response. That's a fast circuit between your thalamus and your amygdala. Right, so you get this immediate sensory information, it could be a threat so you have a startle response. At the same time, the information's going to your cortex to evaluate the information. And then you realize more slowly, oh, this is nothing to be worried about. It's not a snake, it's a garden hose, for example. So that's why you may startle quickly over something that you then realize is not really a threat. We can actually see why that's the case, because of the circuitry in the brain and how long it takes to process things. The amygdala is also responsible for the memory of emotion. Because it makes sense that you should remember that you're afraid of something so you don't have to learn it every time, and that's why, Rebecca, these people had no memory of their prior fear
R: Aha.
S: Their amygdala's not working, they can't remember the fear response, so it's like they're starting afresh each time. What this adds, this extra bit adds, is that there's gotta be some other circuit that bypasses the amygdala that could then stimulate the fear processing in the cortex, 'cause we experience fear in the cortex, not just in the amygdala. The amygdala's processing and triggering it and regulating it and remembering it, but we experience it partly in the cortex. And so there must be either some other circuit, you know, through this carbon dioxide response, that could do that. Or, just some other way of stimulating the amygdala or those other circuits that is surviving in these patients. They essentially have calcifications that build up in their amygdala, so it hardens and doesn't work very much. But, I don't know if it's a hundred percent gone or not.
E: Do we know about what other effects high levels of carbon dioxide have on the brain? It that established?
S: There's lots of physiological effects. Primarily it is the primary thing that drives your respiration. If you take a deep breath and hold your breath, after whatever, a minute or two, depending on your conditioning, when you're desperate to breath, that's because of high CO2. It's not because of low oxygen. You're actually exchanging oxygen just fine for a long time. It's because you're not moving, you're not blowing off carbon dioxide. It's a much more powerful respiratory drive. So, that's the primary thing. It also dilates blood vessels and has a ton of other physiological effects, but
R: That's actually really interesting, because that explains, I guess, why, when you're a kid and you're holding your breath under water with your friends, I found that, if you're trying hold your breath a little longer it makes it easier when you start blowing air out of your lungs. Like at the very end.
S: Yeah.
R: It feels like a release. It feels much better.
S: Also, exhale as much as you can, and then hold your breath.
R: Yeah.
S: Doesn't last quite as long because then you don't have any air in your lungs to exchange oxygen and so the oxygen drive kicks in much more quickly. But when you take a deep breath, it's the CO2 drive that's kicking in first. But, yeah, very cool. Be interesting to follow this to see what this ultimately leads to in terms of, again, fleshing out the circuitry in the brain.
Feathered Dinosaurs (40:40)
Neurologica Blog: Transition Denial and Feathered Dinosaurs
S: One more quick news item. We've spoken in the past about the whole feathered dinosaur thing. One of my favorite areas of paleontology because, well, dinosaurs are cool, birds are cool, and birds are dinosaurs, right? And this is also, in my opinion, one of the biggest home runs for evolutionary theory. Birds as a group seems pretty isolated from any other group. Yes, they're vertebrates, and they're related to other vertebrates, but they seem pretty distinct from other vertebrates. They fly. They have feathers, et cetera. And so the feathered dinosaurs significantly fills in the space, the evolutionary space, between non-avian dinosaurs and birds. And so it's exactly what you would predict from evolutionary theory that they must be connected to some other group somehow, and lo and behold, we found all these fossils. Which is cool in that dinosaurs like velociraptor, like, you know, from Jurassic Park, for example. They had feathers. Now we have to completely reimagine what that whole group of theropod dinosaurs looked like. Many of them had feathers.
E: Oh. I smell a remake. (laughter)
R: No, you could just George Lucas it. Go back and do a special edition.
S: Redo the CG.
B: CG overlay.
S: Paleontologists recently discovered another species of feathered dinosaur, again in China. There's a huge deposit of, I guess there were a lot of feathered dinosaurs, _____________, at that time and location, and paleontologists are finding more and more of them. This one is called eosinopteryx brevipenna, which means red and stubby-winged. And he's one of the smallest, a very tiny little guy. A beautiful transitional species. Absolutely beautiful. Looks like a dinosaur: bony-tail, clawed fingers, feet made for running, teeth; except it has feathers. It had feathers all over its body. But it could not fly, its wings were too stubby to fly. So, again, it's beautifully transitional between non-avian dinosaurs and birds. But, of course, that's not a problem for people like Ken Ham from Answers in Genesis who writes:
R: Two more gaps!
S: Not even. Worse than that. He says:
Now, one headline described the fossil as [quote unquote] 'almost birdlike' and the authors of the report in Nature Communications note many features the fossils share with living birds, particularly those that live on the ground. In fact, Dr. Elizabeth Mitchell and Dr. David Mentin, [both doctors from Answers in Genesis, mind you ] both examined the photos of the fossil and the criteria the authors used in classifying the fossil as a dinosaur. They agreed that it is a bird, not a feathered dinosaur.
(garbled reactions)
R: Doh. I mean the creationists looked at some photos and (garbled)
B: There you go.
S: Yeah, and the article notes features it shares with living birds, and other features it shares with dinosaurs! That's why it's transitional. 'Cause it has some bird-like features and some dinosaur-like features. Bony tail, teeth. It lacks all of the evolutionary adaptations to full flapping flight, which all birds have. So, the thing is not just a regular ordinary bird. It is a feathered dinosaur. It's just ridiculous. But what it shows is there is essentially no limit to the denial of transitional fossils that the creationists can do. Complete and utter denial, and it's just mindless.
R: I picture those quote unquote doctors going to their desk and just like opening up the paper and just going "Sh-i-i-i-i-i-i-t!"
S: Yeah, me too. Me, too. Seriously, that's like the one thing, there's like, it's gotta bother them.
R: Yeah, every day.
S: What are they gonna say about this one? Look at the thing? Oh, it's clearly a dinosaur with feathers. How are we gonna rationize that away?
E: Yeah. How do I explain that god created that?
S: Down deep, somewhere deep in their psyche they've got to be bothered by such stunning evidence that they're wrong. It's hard to imagine. But, you know, never underestimate people's abilty to rationalize and compartmentalize, et cetera.
R: Yeah.
E: Um hm.
S: Unbelievable.
Who's That Noisy? (45:08)
Answer to last week: Carl Sagan, Cosmos
This section is in the middle of being transcribed by banjopine (talk) as of {{{date}}}. To help avoid duplication, please do not transcribe this section while this message is displayed. |
Questions and Emails ()
Question 1: Tuesday Boy ()
Follow up to WTN from last week
Interview with George Hrab ()
Quick chat about NECSS 2013 - http://www.necss.com
Science or Fiction ()
Item #1: A new systematic review concludes that CT scans in young patients may pose a greater increased risk of cancer than the diagnostic benefits they provide. Item #2: New research shows that people have greater happiness and sense of well being as they age, regardless of when they were born. Item #3: A recent review of research involving 122 personality characteristics finds no significant difference in male and female profiles.
Skeptical Quote of the Week ()
Nothing exists except atoms and empty space; everything else is opinion.
Announcements ()
References