SGU Episode 780
This episode is in the middle of being transcribed by xanderox (talk) as of 2020-06-25. To help avoid duplication, please do not transcribe this episode while this message is displayed. |
Template:Editing required (w/links)
SGU Episode 780 |
---|
June 20th 2020 |
(brief caption for the episode icon) |
Skeptical Rogues |
S: Steven Novella |
B: Bob Novella |
C: Cara Santa Maria |
J: Jay Novella |
E: Evan Bernstein |
Quote of the Week |
'Science is elegant and beautiful, but it requires an effort to understand. This is a golden opportunity to educate people. Any person with a scientific temperament, not necessarily a scientist, cannot support these types of messages.' |
Hasan Al Hariri, CEO of the Dubai Astronomy Group, when asked about the June 21, 2020, doomsday insanity[1] |
Links |
Download Podcast |
Show Notes |
Forum Discussion |
Introduction
Voiceover: You’re listening to the Skeptics' Guide to the Universe, your escape to reality.
S: Hello and welcome to the Skeptics' Guide to the Universe. Today is Wednesday, Jun 17th, 2020, and this is your host, Steven Novella. Joining me this week are Bob Novella...
B: Hey, everybody!
S: Cara Santa Maria...
C: Howdy.
S: Jay Novella...
J: Hey guys.
S: And Evan Bernstein.
E: Good evening, ladies and gentlemen!
C: Good evening!
S: So the world continues to simmer along. (Rogues laugh) With all of the things—
C: —Just barely.
S: —that are happening—
E: —A week-to-week assessment.
S: Yeah, we were doing the COVID-19 update because we’re in the middle of a pandemic, but then the Black Lives Matter issue has exploded for good reason, and that deserves a lot of attention as well. We’ve actually been getting a lot of questions about some of the science and critical thinking issues surrounding the protests that are happening and statistics, etc., and studies that have been coming out. So we’re going to address those in the Email and Questions section because I think that’s a good way to deal with those issues, by answer questions and being a little bit more interactive.
J: And since that happens to be in our sweet spot, we might as well dig in.
S: Yeah, yeah. And we’ve been talking about, like, what should we be talking about when all this big, world-changing stuff is happening around us? We can’t just talk about narrow news stories. We want to do what we do best. We want to contribute what we feel is in our sweet spot, as you say, Jay, which is let’s talk about the science, the evidence, the critical thinking. And maybe, hopefully, raise the level of discourse a little bit if we can do that.
COVID-19 Update (1:44)
S: So the quick COVID-19 update. Again, it seems like it’s accelerating. Like, there’s just so many news items with it. One thing that’s interesting that I wrote about earlier in the week is that—and we’ve had a number of these questions—what was the effect of the lockdown on the flu season?
B: Yeah! Great question!
C: Oh, interesting! I think it would help, right?
B: Yeah! Absolutely.
S: And now we have some data. And, of course, it depends on where you are in the world. The COVID-19 hit the US at the tail end of the flu season. This flu season was a particularly bad one; it was at the upper end of the typical range.
E: Was there an issue with the vaccinations, or—
S: —No. No, there wasn’t.
E: —they just weren’t as effective?
S: No, their vaccine was actually fine this year. It wasn’t the vaccine; it was just a bad flu season.
C: Interesting.
E: Hmm.
S: Yeah. There [were] between 20,000 and 60,000 deaths in the US, which—
B: —Well, which was it? 20 or 60—I mean, that’s a huge range, man.
C: (laughs) That’s a wide number, yeah. Epidemiology.
S: 290,000 to 650,000 globally. So the reason for the range is because—
B: —Did it kill the person or not?
S: No, no, no. Most people who get the flu don’t get a flu test, and so, then, you have to infer—
B: —That’s right.
S: —so, clinically, did they have the flu? So if you count just laboratory-confirmed cases, that’s at the low end. And if you count probable clinical cases, that’s at the high end. So—
C: —I don’t think I’ve ever had a flu test. I get a vaccine ever year, but I don’t think I've ever gone to the doctor and [have] them actually test me for the flu. They just say, "Oh, you probably have the flu."
S: Exactly. Exactly.
E: So the high number’s the extrapolation of what is likely?
C: It’s based on [inaudible].
S: Based upon—
E: —Infection rate.
S: —Yeah, if you go to your doctor and say, "I have the flu," and they treat you for the flu, that counts, even if they didn’t do a laboratory test to confirm it was actually the influenza virus.
B, C, E: Right.
S: So that’s why there’s a range.
B: I don’t think should even state the low end, then, 'cause it’s clearly wrong, clearly.
C: (laughs) Yeah.
S: Well, whatever. They could be—
E: —There has to be a floor. They want you know it wasn’t zero.
C: We’re basically just showing the error bars. Like, "It’s somewhere in this range."
S: This is a sideshow, guys. Let me get to what we’re actually talking about. So you’re right—
B: —Sometimes a sideshow’s really fascinating!
(Rogues laugh)
C: Story of our lives.
S: —So if you graph out the numbers of infected, of hospitalizations, and of deaths, it typically peaks [in] January, February, and trails off through May. But this year, basically, it ended five weeks early.
C: Oh, wow!
S: The lockdown—
B: —Killed it!
S: —completely shut down the flu season.
B: Cut it off at the knees.
C: But you would hope it would.
J: But, Steve, I don’t want to sound like a jerk right now, but no shit!
C: Yeah. Exactly. (laughs)
S: But, Jay, it isn’t "no shit" because think about it: people are questioning whether or not the lockdown was effective, and this is an independent piece of evidence that, yeah, it’s effective! It actually does keep viruses from spreading around, not just COVID-19, but also the flu season. As you say, it should have worked, but it’s nice to know that it actually did.
B: And Jay, don’t forget, a lot of people were saying, "Well, if this coronavirus is so bad, why don’t we take similar measures with bad seasons?" And a lot of people were thinking, "Yeah! Maybe we should take it more seriously because that’s a lot of people that die every year. And here is more proof, then, that if we did take it a little bit more seriously, especially in a bad flu season, and do something akin—not a full on lockdown, but just be more careful with touching your face and maybe even more masks—we could cut those numbers down as well for the annual flu.
S: Exactly, Bob. Exactly.
C: Yeah, Bob, wouldn’t it be great if human behavior changed, [if] the biggest thing that came out of this is that people actually follow their own advice and decide not to go to work when they’re feeling sick or not send their kids to school when they’re feeling sick.
E: I think handshakes are done.
C: Yeah, I think so, too.
E: Or if not, severely curtailed. So there are behaviors that are going to change probably forever as a result of this.
S: I think so.
E: And that’s good.
S: And I hope in a good way. So, Bob, I think you’re absolutely right. And think about it: if 60,000 people died this flu season in the US from the flu, or 400,000 died worldwide, it wouldn’t have made headlines.
B: No.
S: There would’ve been zero discussion about it because we’ve become complacent because it happens every year.
C: Yeah, we’re used to it.
S: And this it not to say that we needed to respond this way to COVID-19 because if we hadn’t, there would’ve been—
B: —A nightmare. More of a nightmare.
C: Oh gosh.
S: —hundreds of thousands more deaths in the US and millions of deaths in the world. It would’ve been much, much worse. But, at the other end, I do think it absolutely means maybe we shouldn’t be so complacent about the flu. And maybe we could take some of the skills that we’re learning, collectively, as a society, and apply that to the flu season. So, if people were, as you say, Cara, if you’re sick, don’t go to work! Don’t send—
C: —I know! People do it all the time, though!
S: —don’t send your kid to [school]! Wear masks! During the high—if you’re going to be in [tightly-packed] public places during flu season, wear a mask. Wash your hands. Don’t touch your face.
C: Don’t fly sick!
S: Don’t fly—exactly! And maybe we need to think carefully about how we just arrange our big social events so that we’re not creating petri dishes all over the place. And maybe coming out of this, we will be better able to treat those flu season because people are more ready to do it, because basically they’ve just mostly been ignoring the CDC every year when it comes to flattening the curve of the flu. The one other little thing is that when we’re counting—we’re trying to calculate the risk versus benefit of the economic shutdown. There’s a lot of things other than COVID-19 deaths that we have to consider on both ends of the equation. But, at the very least, we have to count tens of thousands of people saved from dying of the flu. That counts as well.
C: Oh, you’re right. That’s an economic benefit.
S: Yeah, totally.
C: Interesting. Yeah, I don’t think a lot people think about that.
S: But, again, there’s things on both sides. So the economic shutdown is not benign either. So, clearly, we can’t do this every year. And that was one thing I [inaudible]. How often can we do this? It might 20 years before we could really weather another shutdown like this.
E: Gosh. Maybe. Maybe.
C: Which sucks because I doubt it’ll be 20 years before another —
S: —I know! So what is—
C: —epidemic or pandemic.
S: —That means we need sustainable strategies for mitigating epidemics and pandemics so that we don’t ever have to shut down our economy like this again.
C: And they to be organized. You know, there’s a great—I sound like a broken record—the newest frontline, which just came out yesterday or the day before on pbs, is—I think it’s called something like "Coronavirus: What Went Wrong"—and it’s all about countries that handled it well, countries that didn’t, all the missteps that we made with the CDC, which missteps are with the WHO. It’s actually really well done. They’ve researched a lot of, like, "What did we f- up this time so we could do better next time?"
E: Look, if we don’t learn from these mistakes, we are just doing ourselves the greatest disservice [to] humanity. If we—
C: Yeah, and it shows. You see South Korea doing so well because they dealt with SARS and then MERS. And they just had—they were like, "We ain’t gonna let this happen again."
S: Yeah.
C: And they were—they just had this amazingly rapid response. And we could do that, too. I think you’re so right, Steve, that we’ve been complacent. I also wonder if some of the behavior, like the psychological drive behind these behavioral issues is that the people who are most affected are also the people who are most hidden in society, so, like, the elderly, who are often living in nursing homes or don’t go out in public as often, people who are low-SES, who are struggling—they’re sort of not as elevated or visible in society, And so I think it’s easy to just get complacent and forget about it being a problem because if you ask most kind of middle- to upper-middle class people in America, like, "Hey, isn’t the flu dangerous?" They’re like, "The flu doesn’t kill people."
S: Yeah. It’s true.
C: They’re like, "I’ve never met anybody who the flu as killed." And it’s like, "Well, you’re lucky, then."
S: It’s probably not true, also.
C: Yeah. Probably not.
S: Here are the numbers. So about 8.4 million cases worldwide, 450,000 deaths, over 115,000 deaths in the US. So, still, we’re sort of—overall in the US, the numbers are starting to come down, but it’s very state-by-state. And here’s the thing: we’re starting to get—again, it’s not clear if people should call this a surge, a second wave, a resurgence, or whatever. But there are a number of states that are really peaking now. Arizona, Arkansas, South Carolina, Alabama, Oregon, Florida are all having these peaks. I think Arizona’s the worst right now.
E: Interesting.
C: Yeah, Texas, too.
E: Mostly the southern states.
S: And it relates to their behavior.
E: Geographics.
S: It relates to the regulations in those states. I mean, it’s pretty clear.
C: They opened up faster and more vigorously.
S: Yeah.
C: I think we’re at a point now where our number, our infection rate is just exceeding all of western Europe combined.
S: Yeah. We’re still very much in the middle of the first wave of this pandemic.
E: Hmm. That’s the—
S: —People have this overall sense that, "Ah, it’s over." And they’re trying to go back to business as usual. But, no, you look at the numbers. It’s still—we’re in the middle of this, still.
C: Well, and that’s what shows. We kind of discussed this a little on Friday, but it just goes to show a basic misunderstanding about the mechanics of a virus. We’re nowhere near herd immunity. We don’t have a really good treatment yet, although there is that steroid that people have been talking about that seems to be showing promise. We don’t have a vaccine. What reason do we think that we are now more protected than we were before. We’re just not.
S: Right. Yeah. Right. Exactly.
C: It’s just complacency and laziness.
J: What’s basically changed is that the places where the virus was smacking hard have lessened significantly, and now it’s just moved to other states.
C: No, it’s still in those place. That’s the thing. The places where the virus smacked really hard got their shit together and shut down more severely. And the places that never shut down or that did shut down but go, "Hey, I don’t see a problem. Nothing every happened here." (whispering) "Because you were shut down!"—just loosened everything up and now they’re getting hit hard.
S: They’re getting hit.
C: The virus is everywhere. It’s not going away until we can vaccinate against it or until enough people get it that we’re not going to catch it again.
S: Yeah. And that’s the final thing. I do hope that in addition to wearing masks being more socially acceptable, even required, going forward during flu season or whatever, hopefully support for things like vaccines will be much higher. I’d like to see the compliance rate could be much higher with the flu vaccine. Maybe if and when we do develop a COVID-19 vaccine, I wonder if they can pair it with the flu vaccine. And if they were given at the same time, would the compliance with the flu vaccine go up?
C: Oh, interesting. But it’s also interesting how many people are already writing about and doing studies about—there’s already vaccine resistance to the non-existent COVID vaccine.
S: Oh yeah. Right.
E: Steve, in the news recently, they’re talking about steroids helping reduce the—
S: —Yeah, Cara brought that up.
C: That’s a new one, yeah.
S: There’s dexamethasone, which is a powerful intravenous steroid. There was a study which showed that it might decrease the death rate in the sickest people. So, essentially, some infections during parts of the infection—it’s the inflammatory response that does the damage. And so, especially with viruses, the question is—like with some bacteria, it releases toxins, and the infection itself is doing all the harm—with viral infections, often it’s the body’s immune and inflammatory response that actually does the harm. It’s the inflammation. And so the question is—
C: —It’s like when people refer to cytokine storms, Steve, that’s often what’s happening?
S: Yeah, that’s part of it. The cytokine storm is at the end of the sickest patients when things just shut down. But if you give steroids to shut down the inflammation, what will happen? It will sort of reduce the damage from the inflammation, but it also lets the infection go unchecked. And so there’s a balancing act there. And so you have to study it with every virus, every type of infection, and maybe even different phases of the infection. There’s some types of meningitis, for example, where steroids are helpful; other types of meningitis where steroids will kill you. It totally depends on the specific infection. But it was reasonable to study it in COVID-19 because when people are really sick, the virus and the inflammation are just ravaging their organs, especially their lungs. So it was reasonable idea. So they’re saying, "Okay, if we use steroids when, basically, the game is otherwise over, the inflammation is just destroying their organs, can this save some people?" And the preliminary evidence is positive, but, of course, we need to study it a little bit more carefully.
C: I mean, that’s good news for the sickest people. It’s good to hear because the scary part of this virus is what it does to people when they’re already on the ventilator. Like by the time they get there, it doesn’t look good.
S: Yeah. It’s incremental. It’s not a game-changer, but I think that overall, doctors are just getting incrementally better at treating COVID-19. And I think that’s probably a big reason why the death rate is going down faster than the infection rate is. I think we’re just getting better at jumping on people who are sick, testing them, treating them.
C: Yeah, and probably people are getting treated earlier, too.
J: So the bottom line is: we are still within the pandemic. Tell your friends and family that you can, "Be mindful. Don’t let your guard down. We have to keep the protocols high and active." That’s it.
S: Yeah. That’s it. We need endurance at this point and discipline. Otherwise, we may look back at this and think, "Argh. This again was an opportunity where we let it get away from us." And we’re going to be paying for it down the road.
News Items
S: All right. We’ll muddle along.
Brain on a Chip (16:05)
S: Jay, you’re going to start the News Item segment by telling us about this new brain on a chip.
J: So engineers at MIT have designed a brain on a chip that is actually smaller than a piece of confetti.
E: All right, you have to define "brain" for us, Jay. Go ahead.
J: Yeah. Well, here we go. It’s kind of like a brain. So it’s made up of tens of thousands of silicon-based brain synapses known as memristors. Memristors.
E: Memor—what—
J: —That’s a portmanteau.
E: —resistor?
C: Resistor, but memory?
J: Memory transistors.
B: Memristor’s a portmanteau of memory and resistor.
C: Ah! I was right. It’s resistor, not transistor.
J: Oh, I’m sorry. And resistor. You’re right, Bob. So the engineers published the results of their research in the journal Nature, Nanotechnology, and I just like the fact that we’re [in] an age where we have journals that are named with the word "nanotechnology" in them, and it’s legit.
E: Yeah, well, Nature, Phrenology kind of closed awhile ago, so…
B: Yeah, they’ve been out for a while, man.
J: Keep in mind that there have been many advances in this exact area, right? And this is just another incremental advancement that was made with memristors out of alloys of silver, copper, and silicon. Now, previous versions were made with un-alloyed elements and didn’t function as well as the new one. And that is, basically, it as its core, but let me give you come of the details because there’s some cool stuff that they’re doing here.
So, memristors are called neuromorphic devices, which means they mimic the human brain’s neural architecture. "Neuro-morphic." I love that. A "neuromorph." That could’ve been one of our patrons' names, right, Bob? These connections are an essential component in neuromorphic computing. So even though it serves as a [resistor] in a circuit, it’s actually a lot more like a real human brain synapse. It’s the connection between two neurons, right? That’s really what this memory transistor is doing. [Jay describes transistors, forgetting that memristors are not close to transistors, but rather to resistors.] In a traditional transistor, you either have on or off. And when we think, "What does an actual synapse do?" A synapse isn’t on or off. A synapse has to do with the amplitude or the volume of the signal that’s coming through. And they were—
C: —Yeah, but it becomes all or nothing. That’s how neurons work.
S: In a way, Cara.
C: There’s a threshold. There’s a cutoff. [inaudible]
S: There’s a threshold effect, and the neuron either fires or not, but what really makes a difference is the frequency at which the neuron fires. Is it firing fast or slow? And that’s analog.
C: That’s true.
S: So, yeah, each individual firing is all or nothing, but the rate at which it fires—that’s the variable. And that’s something a lot of people don’t know. They think, "Oh, the signal goes through. The neuron just fires once." No, it’s like—
C: —No, they fire—
S: —it’s a train of firing. In that way, the signal’s analog. So this is a way—the memristor’s a way of doing the same thing where it’s not just on or off. It’s not a 1 or a 0. It’s a range in between.
J: A memristor could send a varying strength of signal depending on the strength of the signal received. It kind of just repeats the signal that it’s got.
C: Yeah, so that is really similar, actually.
J: This makes it function more like a real synapse, and if you think of that like the difference between on or off—which, essentially, is two options—a memristor would have many, many more options, making its possible range of operations much bigger. So another interesting thing is that a memristor would be able to remember a value that was associated with a particular signal strength and re-create the same, exact signal the next time it receives that specific signal. And that’s where this thing dives into super complexity because when you have—
C: —Because it can learn?
J: Well, yeah, it’s able to have memory, which—I’m sure, physically, it’s got memory. But I guess what they’re saying is when it gets the same strength of signal, it’ll access the memory that it had. Kind of replicating what’s going on in the brain, in a way. I guess this—
C: —Yeah, sort of, at the synaptic level, it’s replicating it.
J: Yeah. So previous memristors designs—they didn’t use alloys, like I said before. And they had a problem with ions that would flow through them, actually wandering off track and getting kind of lost. So it’s kind of like thinking about a hose that has water going through it, and there’s a little dribble of a hole that’s letting water out, and some of the water gets lost. Well, that water is crucial. Why?
C: It’s funny because that happens all the freakin' time in the brain or in body cells. (laughs) That’s exactly how cells work.
J: They’re trying to get it so the accuracy is there. It’s consistent because when, like the hose, when water leaks out, then the amount of water going from point A to point B is not the correct amount, which isn’t soliciting the correct response or reaction by everything else around it. It’s a little complicated, but—
C: —It is, but the funny thing is, I’ll be impressed when it still works, even though it’s leaky as hell, which is how our brains are. (laughs)
J: Well, let’s get at close to perfection as we can first, and then we’ll let it get freaky [?]. So they’re calling it signal strength. So when some of these ions get lost, the signal strength drops, and then that was a problem because things weren’t predictable and weren’t acting in a way that they wanted. So the engineers looked to known metallurgy techniques to solve the problem, which was genius, if you think about it. So they figured out that copper was the right metal to add to the silver and silicon mixture. So now they—
E: —"That’s right, copper!" (James Cagney voice?)
J: "That’s right, copper!"
C: (laughs)
E: [inaudible]
J: And because they knew from metallurgy techniques, they knew that copper would help retain the ions inside the flow. And, you know what? It worked. So the researchers said that "in performance tests, the new hardware worked better than its predecessors" and they were able to do a lot of really cool things with them working much better. You know, they were using it to sharpen an out-of-focus image, which I thought was really cool. This is not truly novel because software programmers have already created artificial synapse networks with software, right? But that is just not the same. And the research team wants to build a physical neural network that’s hardware-based.
So this could be used, when they really get this slick, as a portable artificial intelligence system. Now, I don’t think it’s going to—it’s not going to be conscious. Let me explain what this means. This would come in handy, [as] an example, if you would want to operate without an internet connection. Like today, you talk into your phone and it tells you—it types out what you said. Your phone can’t do that. Your phone is sending what you’re saying to their server farm with really amazing software on the other end that’s translating what you’re saying and sending back the translation, right? It’s not happening on your phone.
B: I didn’t say they could do that!
C: Yes you did when you checked that box.
B: Oh shit.
C & E: (laughs)
J: Well this is considered—
E: —I didn’t read all that.
J: —this is considered heavy processing. Why would you want everybody’s phone to have to even come—they couldn’t. Your phone couldn’t handle the amount of processing that needs to be done to do this. It’s very smart, from a software perspective, to have all the phones be sending back to the main server. The main server has all the juice to do the processing and then just gives you back the answer; that’s fine. But there are circumstances where you want things to happen super fast, and you don’t want to be relying on the internet. Like, for smart cars as an example, you want cameras on a smart car to be able to see something and get an instantaneous, a millisecond response, which you can’t get fast enough over the internet. [So] then you have to do it locally. And this would be the way that they would be able to take that super dense and process-heavy computations locally and shrink them down so we can have them in a computer that’s in your car or your cellphone or handheld devices at some point.
So, they’re calling it "having a resident neural network," and they’re saying that it would be independent from the internet. It would operate in real time, as opposed to having to wait to get the response back from some server somewhere. If the internet goes down and the space shuttle or the dragon capsule is using this, they’re screwed. You know what I mean?
C: Right.
J: So you have the intelligence onboard. So, it’s an incremental move. It’s really cool because they were able to make a milestone change here, even though it didn’t lurch things forward so much that we should be like, "Hey, five to ten [years]!" Nobody’s saying five to ten on this. But I find it interesting because as we mimic human brain—as we kind of reverse engineer what the brain is doing, and we’re pulling more and more pieces out that they’re going to try to fit into this hardware, what are we going to get? And will there be—I put it to all of you guys—will there be some type of emergent consciousness?
(ur): Ermergerd!
(ur): Ermergerd!
J: Ermergerd!
Twistronics ()
Drake Remix ()
Editing Human Embryos ()
Science or Fiction ()
Voiceover: It’s time for Science or Fiction.
Theme: Earth
Item #1: About 50% of the heat given off by the Earth’s interior is generated from radioactive decay.[6]
Item #2: Earth is the densest planet in the solar system.[7]
Item #3: The driest place on Earth is the Atacama Desert in Chile and Peru, which receives on average 15 mm of rainfall per year.[8]
[Rogue’s] Response
[Rogue’s] Response
[Rogue’s] Response
[Rogue’s] Response
[Host] Explains [Item #]
[Host] Explains [Item #]
[Host] Explains [Item #]
[Host] Explains [Item #]
Answer | Item |
---|---|
Fiction | Atacama |
Science | {{{science1}}} |
Host | Result |
---|---|
' |
Rogue | Guess |
---|
Who's That Noisy? ()
- Answer to last week’s Noisy: [brief description, perhaps with link]
New Noisy ()
[brief, vague description of Noisy]
Questions/Emails/Corrections/Follow-ups ()
Question/Email/Correction #1: [brief description] ()
Skeptical Quote of the Week ()
Science is elegant and beautiful, but it requires an effort to understand. This is a golden opportunity to educate people. Any person with a scientific temperament, not necessarily a scientist, cannot support these types of messages. – Hasan Al Hariri, CEO of the Dubai Astronomy Group, when asked about the June 21, 2020, doomsday insanity[1]
Signoff/Announcements ()
S: —and until next week, this is your Skeptics' Guide to the Universe.
S: Skeptics' Guide to the Universe is produced by SGU Productions, dedicated to promoting science and critical thinking. For more information, visit us at theskepticsguide.org. Send your questions to info@theskepticsguide.org. And, if you would like to support the show and all the work that we do, go to patreon.com/SkepticsGuide and consider becoming a patron and becoming part of the SGU community. Our listeners and supporters are what make SGU possible.
Today I Learned
- Fact/Description, possibly with an article reference[9]
- Fact/Description
- Fact/Description
References
- ↑ 1.0 1.1 Gulf News: Will the world come to an end on June 21?
- ↑ ScienceDaily: Engineers put tens of thousands of artificial brain synapses on a single chip
- ↑ Neurologica: What is Twistronics?
- ↑ Forbes: There Are At Least 36 Intelligent Alien Civilizations In Our Galaxy, Say Scientists
- ↑ OneZero: Scientists Edited Human Embryos in the Lab, and It Was a Disaster
- ↑ Physics World: Radioactive decay accounts for half of Earth’s heat
- ↑ Universe Today: How Dense Are The Planets?
- ↑ Universe Today: What is the Driest Place on Earth?
- ↑ [url for TIL, publication: title]
Vocabulary